
cloud-native software
supply chain security: 
the hard truth

Daniel Drack



☝ Disclaimer

- I‘m no (hardcore) security guy

- Observations from a cloud native 
consultant POV



🎯 My Goal

- Provide ideas about cloud native 
software supply chain bp
- cheap + expensive examples

- Share my concerns😅



Software Supply Chain

4



The software supply chain involves 
a multitude of tools and processes 
that enable software developers 
to write, build, and ship 
applications.

Melara & Bowman, 2022, Intel Labs



https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf

CNCF - SSC in a 🥥



CIS - SSC ⚡ in a 🥥

https://www.cisecurity.org/insights/white-papers/cis-software-supply-chain-security-guide



Confidentiality

Integrity Availability

⚡ affect..



Stages of the SSC

9



Stages/Elements of the SSC

- Self Written Code
- Dependencies
- Build
- Artifacts & Distribution/Deployment
- (Runtime)



Stage: Our Code

code content code 
management



⚡ threats

🪲 - bugs
☣ - malicious code
🔑 - secrets

Stage: Our Code - code content



Our Code - [cheap] scanners
SAST code scanners
Secret detection scanners
IaC code scanners



Our Code - [expensive] tests
Unit Tests
System Tests
E2E Tests
Trace-Tests

Code Coverage



⚡ threats

⌨ - manipulation
🥷 - theft
🗑 - deletion

Stage: Code - code management



Our Code – [cheap]

Mandatory 
Signed Commits
--
Mandatory MFA



Our Code – [expensive]

CODEOWNERS
--
Pre-Commit



Stage: Our Code - show of✋

mandatory MFA for source code access
—
Pre-Commit or Push-Policy in place



Stage: Dependencies

packages, libraries, base-images,.. 

Please use a 
Package Manager



⚡ threats

🪲 - bugs
☣ - malicious code
⚖ - license
🎭 - integrity

Stage: Dependencies



Dependencies – [cheap]

Inventory
--
License Checks



Dependencies – [expensive]

airgapping
--
require signed
dependencies <component group="com.github.javaparser" name="javaparser-core"

version="3.6.11">
<artifact name="javaparser-core-3.6.11.jar">

<pgp value="8756c4f765c9ac3cb6b85d62379ce192d401ab61"/>
</artifact>

</component>



Stage: Dependencies - show of ✋

using a package manager
—
package usage policy in place



Stage: Build

{ }
Build /

CI Artifact



⚡ threats

🪲 - build bugs
☣ - malicious env

Stage: Build



Build – [cheap]

Pipelines as Code

--

Dedicated Env • Just don’t build on your 💻
• … and on the 💻 under 

your colleagues des.



Build – [expensive]

Zero Trust

--

Reproducible Builds

“[..] but, how do I troubleshoot my build now?”

“[..] but, I’ve always had access 
to the build machine”

“[..] wait what, no root access anymore 🤯”



Stage: Build - show of ✋

fully automated build
—
truly bitwise reproducible builds



Stage: Artifacts & Distribution/Deployment

CI 📦
📄

REPO
CD1

🤷

CD2

CD1 … Continuous Delivery
CD2 … Continuous Deployment

Artifact

Metadata



⚡ threats

🥷 - theft /
deletion

🔁 - replacement
🔍 - no transparency
🗓 - updates

Stage: Artifacts & Distribution/Deployment



Artifact – [cheap]
Repo Security [cheap] SBOM

👤 – RBAC
🤖 – Service Accounts
🔁 – cycle tokens/credentials
🔒– MFA 



Artifact – [expensive]
Attestation [real] SBOM



artifact repo basic security bp
—
create [real] SBOM

Stage: Artifacts - show of ✋



Software Supply Chain has multiple 
levels → very different threats ⚡

Solutions / Mitigations on different levels 
of effort and complexity ☝

Bottom Line Message



in the real world

35



literature input from.. 
- CIS Software Supply Chain Security Guide
- CNCF Software Supply Chain Best Practices
- OWASP SCVS Software Component Verification Standard
- SLSA Supply-chain Levels for Software Artifacts
- Microsoft Secure Supply Chain Consumption Framework
- DoD Enterprise DevSecOps Reference Design

Context
consulting experience + master thesis research, 
looking for a “somewhat complete” set of SSCS 

controls



Context

3 Implementation 
Groups

167 controls
6 categories

83 questions 
4 possible answers

30 companies 
(DACH)



IG 3

Context

IG 2

IG 1

● IG 1
○ small company
○ no sensitive data

● IG 2
○ middle size company
○ some sensitive data

● IG 3
○ enterprise
○ highly sensitive data



Findings - Companies per IP



Findings - Using VCS



Findings - Implementing all IG1 controls



- 👍 ⅓ implemented 
somewhere

- 😔 25% definitely not 
implemented

Findings - Implementing IG3 controls

- 🤷 > ⅓ unknown
- no policy?
- know how?

- ☝ only necessary for IG3 
companies



Findings - Controls vs Effort



Lessons Learned – from data

Low hanging🍇 not 
reaped

👆IG / company size
👇Transparency

build, SBOM, 
attestation🙃~25-50% of controls per 

group not implemented



Lessons Learned – from experience

automation is 🔑
(IaC, pipelines, testing, PaC, ..)

scans, tests & 
checks 🤝 policies 



The Hard Truth

👍 lots of information available

👎 many simple controls not implemented
👎 most complex controls not implemented

bigger company = less transparency/adaptation



Daniel Drack
Senior DevOps Engineer @ FullStackS

Organizer / Host
CNCG Graz + KCD Austria

- BSc MA MBA
- CK{A/AD}, TFA, VA, GitLab, PSM I, Snyk

📧 daniel.drack@fullstacks.eu
🌐 https://drackthor.me
@DrackThor



used Literature (selection):
- CNCF Supply Chain Best Practices
- CIS Supply Chain Security Guide
- NIST SSDF
- SLSA
- OSSF S2C2F
- OWASP ASVS
- SSA Secure Software Controls

Code:
- SAST
- (GitLab) Push Rules
- Codeowners
- IaC Scanning Tools
- The Test Pyramid

Dependencies:
- SCA Tools
- SBOM Introduction
- Dependency Track

Build:
- Reproducible Builds
- Zero Trust Paradigm
- container based build

Artifacts, Distribution & Deployment:
- The Update Framework
- In-Toto Attestation
- Sigstore

Further Reading

https://github.com/cncf/tag-security
https://www.cisecurity.org/insights/white-papers/cis-software-supply-chain-security-guide
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://slsa.dev/
https://github.com/ossf/s2c2f
https://github.com/OWASP/ASVS
https://securesoftwarealliance.org/download/framework-secure-software-controls/
https://snyk.io/de/learn/application-security/static-application-security-testing/
https://docs.gitlab.com/ee/user/project/repository/push_rules.html
https://docs.gitlab.com/ee/user/project/codeowners/
https://www.techtarget.com/searchsecurity/tip/IaC-security-scanning-tools-features-and-use-cases
https://martinfowler.com/articles/practical-test-pyramid.html
https://chpk.medium.com/top-10-software-composition-analysis-sca-tools-for-devsecops-85bd3b7512dd
https://blog.gitguardian.com/what_is_sbom/
https://dependencytrack.org/
https://reproducible-builds.org/
https://www.crowdstrike.com/cybersecurity-101/zero-trust-security/
https://support.atlassian.com/bitbucket-cloud/docs/use-docker-images-as-build-environments/
https://theupdateframework.io/
https://in-toto.io/
https://www.sigstore.dev/

